|
Detailed Reference Information |
Eiger, G., Shamir, U. and Ben-Tal, A. (1994). Optimal design of water distribution networks. Water Resources Research 30: doi: 10.1029/94WR00623. issn: 0043-1397. |
|
Optimal design of a water distribution network is formulated as a two-stage decompositon model. The master (outer) problem is nonsmooth and nonconvex, while the inner problem is linear. A semi-infinite linear dual problem is presented, and an equivalent finite linear problem is developed. The overall design problem is solved globally by a branch and bound algorithm, using nonsmooth optimization and duality theory. The algorithm stops with a solution and a global bound, such that the difference between this bound and the true global optimum is within a prescribed tolerance. The algorithm has been programmed and applied to a number of examples from the literature. The results demonstrate its superiority over previous methods. ¿ American Geophysical Union 1994 |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Hydrology, Networks, Hydrology, Instruments and techniques |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|