EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Peters et al. 1995
Peters, D.L., Buttle, J.M., Taylor, C.H. and LaZerte, B.D. (1995). Runoff production in a forested, shallow soil, Canadian Shield basin. Water Resources Research 31: doi: 10.1029/94WR03286. issn: 0043-1397.

Storm flow in forested basins on the Canadian Shield is largely supplied by subsurface water; however, mechanisms by which this water reaches the stream remain unclear. Side slope contributions to storm flow were studied using throughflow trenches on slopes in a headwater basin near Dorset, Ontario. Discharge, soil water content, and chemical and isotopic signatures of subsurface water were monitored at each site. Four hypotheses were tested: (1) most flow occurs at the soil-bedrock interface on shield slopes with thin soil; (2) a significant fraction of event water moves vertically to bedrock via preferential flow pathways and laterally over the bedrock surface; (3) relative preevent water contribution to subsurface flow on shield slopes is a function of soil thickness; and (4) a significant portion of event water flux in storm flow from forested basins with shallow soil cover is supplied from side slopes via subsurface flow along the soil-bedrock interface. Hypothesis 1 was confirmed from hydrometric observations during spring and fall rainstorms. Hypotheses 2 and 3 were supported by temporal trends in dissolved organic carbon and 18O in flow at the soil-bedrock interface and by isotopic hydrograph separations (IHSs) of hillslope runoff. Comparison with the streamflow IHS indicated that event water flux from the basin in excess of that attributable to direct precipitation onto near-channel saturated areas could be supplied by flow along the bedrock surface (hypothesis 4). Flow at the soil-bedrock interface on side slopes also contributed ~25% of preevent water flux from the basin. Much of the event water component of basin storm flow may travel considerable distances via subsurface routes and is not necessarily contributed by surface runoff processes (Horton flow or saturation overland flow). Therefore the assumption that event water undergoes little interaction with the soil during its passage downslope may be unwarranted here. ¿ American Geophysical Union 1995

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, Runoff and streamflow, Hydrology, Unsaturated zone
Journal
Water Resources Research
http://www.agu.org/wrr/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit