EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Runkel et al. 1996
Runkel, R.L., McKnight, D.M., Bencala, K.E. and Chapra, S.C. (1996). Reactive solute transport in streams 2. Simulation of a pH modification experiment. Water Resources Research 32: doi: 10.1029/95WR03107. issn: 0043-1397.

We present an application of an equilibrium-based solute transport model to a pH-modification experiment conducted on the Snake River, an acidic, metal-rich stream located in the Rocky Mountains of Colorado. During the experiment, instream pH decreased from 4.2 to 3.2, causing a marked increase in dissolved iron concentrations. Model application requires specification of several parameters that are estimated using tracer techniques, mass balance calculations, and geochemical data. Two basic questions are addressed through model application: (1) What are the processes responsible for the observed increase in dissolved iron concentrations? (2) Can the identified processes be represented within the equilibrium-based transport model? Simulation results indicate that the increase in iron was due to the dissolution of hydrous iron oxides and the photoreduction of ferric iron. Dissolution from the streambed is represented by considering a trace compartment consisting of freshly precipitated hydrous iron oxide and an abundant compartment consisting of aged precipitates that are less soluble. Spatial variability in the solubility of hydrous iron oxide is attributed to heterogeneity in the streambed sediments, temperature effects, and/or variability in the effects of photoreduction. Solubility products estimated via simulation fall within a narrow range (pKsp from 40.2 to 40.8) relative to the 6 order of magnitude variation reported for laboratory experiments (pKsp from 37.3 to 43.3). Results also support the use of an equilibrium-based transport model as the predominate features of the iron and pH profiles are reproduced. The model provides a valuable tool for quantifying the nature and extent of pH-dependent processes within the context of hydrologic transport. ¿ American Geophysical Union 1996

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, Chemistry of fresh water, Hydrology, Surface water quality
Journal
Water Resources Research
http://www.agu.org/wrr/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit