EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Lahvis & Baehr 1996
Lahvis, M.A. and Baehr, A.L. (1996). Estimation of rates of aerobic hydrocarbon biodegradation by simulation of gas transport in the unsaturated zone. Water Resources Research 32. doi: 10.1029/96WR00805. issn: 0043-1397.

The distribution of oxygen and carbon dioxide gases in the unsaturated zone provides a geochemical signature of aerobic hydrocarbon degradation at petroleum product spill sites. The fluxes of these gases are proportional to the rate of aerobic biodegradation and are quantified by calibrating a mathematical transport model to the oxygen and carbon dioxide gas concentration data. Reaction stoichiometry is assumed to convert the gas fluxes to a corresponding rate of hydrocarbon degradation. The method is applied at a gasoline spill site in Galloway Township, New Jersey, to determine the rate of aerobic degradation of hydrocarbons associated with passive and bioventing remediation field experiments. At the site, microbial degradation of hydrocarbons near the water table limits the migration of hydrocarbon solutes in groundwater and prevents hydrocarbon volatilization into the unsaturated zone. In the passive remediation experiment a site-wide degradation rate estimate of 34,400 g yr-1 (11.7 gal. yr-1) of hydrocarbon was obtained by model calibration to carbon dioxide gas concentration data collected in December 1989. In the bioventing experiment, degradation rate estimates of 46.0 and 47.9 g m-2 yr-1 (1.45¿10-3 and 1.51¿10-3 gal. ft.-2 yr-1) of hydrocarbon were obtained by model calibration to oxygen and carbon dioxide gas concentration data, respectively. Method application was successful in quantifying the significance of a naturally occurring process that can effectively contribute to plume stabilization.

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, Groundwater hydrology, Hydrology, Groundwater transport, Hydrology, Unsaturated zone, Hydrology, Groundwater quality
Journal
Water Resources Research
http://www.agu.org/wrr/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit