EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Margolin et al. 1998
Margolin, G., Berkowitz, B. and Scher, H. (1998). Structure, flow, and generalized conductivity scaling in fracture networks. Water Resources Research 34: doi: 10.1029/98WR01648. issn: 0043-1397.

We present a three-dimensional (3-D) model of fractures that within the same framework, allows a systematic study of the interplay and relative importance of the two key factors determining the character of flow in the system. The two factors of complexity are (1) the geometry of fracture plane structure and interconnections and (2) the aperture variability within these planes. Previous models have concentrated on each separately. We introduce anisotropic percolation to model a wide range of fracture structures and networks. The conclusion is that either of these elements, fracture geometry and aperture variability, can give rise to channeled flow and that the interplay between them is especially important for this type of flow. Significant outcomes of our study are (1) a functional relationship that quantifies the dependence of the effective hydraulic conductivity on aperture variability and on the network structure and fracture element density, (2) a relation between aperture variability and the Peclet number, and (3) a basis for a new explanation for the field-length dependence of permeability observed in fractured and heterogeneous porous formations. ¿ 1998 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, Groundwater hydrology
Journal
Water Resources Research
http://www.agu.org/wrr/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit