EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Tseng et al. 1998
Tseng, H., Person, M. and Onstott, T.C. (1998). Hydrogeologic constraint on the origin of deep subsurface microorganisms within a Triassic basin. Water Resources Research 34: doi: 10.1029/98WR00311. issn: 0043-1397.

The thermal history of the Taylorsville basin indicates that the thermophilic anaerobic bacteria extracted from Triassic strata at 2800 m below the land surface within the basin probably migrated to their current location. In order to ascertain the most probable scenario for microbial transport, a two-dimensional transient fluid flow and heat transport model of the Taylorsville basin was developed using the finite element method. The numerical model was constrained by tectonic and thermal histories of the basin, coupled with the permeability and porosity data extracted from core samples. The model demonstrates that a topographically driven groundwater flow system, caused by the tectonic uplift and erosion during the Jurassic, can explain the observed differential cooling of the basin. The computed groundwater flow rates during this period were on the order of 1 to 100 mm/yr. Combined with the cooling history of the microbially sampled strata, such rates provided a possible mechanism for the introduction of ancient surface or subsurface microorganisms to the deep subsurface. This tectogenetic mechanism may explain the origins of deep subsurface microorganisms for other regions of the Earth. ¿ 1998 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, General or miscellaneous
Journal
Water Resources Research
http://www.agu.org/wrr/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit