EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Assouline et al. 1998
Assouline, S., Tessier, D. and Bruand, A. (1998). A conceptual model of the soil water retention curve. Water Resources Research 34: doi: 10.1029/97WR03039. issn: 0043-1397.

A conceptual model based on the assumption that soil structure evolves from a uniform random fragmentation process is proposed to define the water retention function. The fragmentation process determines the particle size distribution of the soil. The transformation of particles volumes into pore volumes via a power function and the adoption of the capillarity equation lead to an expression for the water retention curve. This expression presents two fitting parameters only. The proposed model is tested on water retention data sets of 12 soils representing a wide range of soil textures, from sand to clay. The agreement between the fitted curves and the measured data is very good. The performances of the model are also compared with those of the two-parameter models of van Genuchten <1980> and Russo <1988> for the water retention function. In general, the proposed model exhibits increased flexibility and improves the fit at both the high and the low water contents range. ¿ 1998 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, Groundwater hydrology, Hydrology, Soil moisture, Hydrology, Unsaturated zone
Journal
Water Resources Research
http://www.agu.org/wrr/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit