EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Jardine et al. 1999
Jardine, P.M., Sanford, W.E., Gwo, J.P., Reedy, O.C., Hicks, D.S., Riggs, J.S. and Bailey, W.B. (1999). Quantifying diffusive mass transfer in fractured shale bedrock. Water Resources Research 35: doi: 10.1029/1999WR900043. issn: 0043-1397.

A significant limitation in defining remediation needs at contaminated sites often results from an insufficient understanding of the transport processes that control contaminant migration. The objectives of this research were to help resolve this dilemma by providing an improved understanding of contaminant transport processes in highly structured, heterogeneous subsurface environments that are complicated by fracture flow and matrix diffusion. Our approach involved a unique long-term, steady state natural gradient injection of multiple tracers with different diffusion coefficients (Br, He, Ne) into a fracture zone of a contaminated shale bedrock. The spatial and temporal distribution of the tracers was monitored for 550 days using an array of groundwater sampling wells instrumented within a fast flowing fracture regime and a slow flowing matrix regime. The tracers were transported preferentially along strike-parallel fractures, with a significant portion of the tracer plumes migrating slowly into the bedrock matrix. Movement into the matrix was controlled by concentration gradients established between preferential flow paths and the adjacent rock matrix. Observed differences in tracer mobility into the matrix were found to be a function of their free-water molecular diffusion coefficients. The multiple tracer technique confirmed that matrix diffusion was a significant process that contributed to the overall physical nonequilibrium that controlled contaminant transport in the shale bedrock. The experimental observations were consistent with numerical simulations of the multitracer breakthrough curves using a simple fracture flow model. The simulated results also demonstrated the significance of contaminant diffusion into the bedrock matrix. The multiple tracer technique and ability to monitor the fracture and matrix regimes provided the necessary experimental constraints for the accurate numerical quantification of the diffusive mass transfer process. The experimental and numerical results of the tracer study were also consistent with indigenous contaminant discharge concentrations within the fracture and matrix regimes of the field site. These findings suggest that the secondary source contribution of the bedrock matrix to the total off-site transport of contaminants is relatively large and potentially long-lived. ¿ 1999 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, Groundwater transport
Journal
Water Resources Research
http://www.agu.org/wrr/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit