Correlation and correlation-based measures (e.g., the coefficient of determination) have been widely used to evaluate the goodness-of-fit of hydrologic and hydroclimatic models. These measures are oversensitive to extreme values (outliers) and are insensitive to additive and proportional differences between model predictions and observations. Because of these limitations, correlation-based measures can indicate that a model is a good predictor, even when it is not. In this paper, useful alternative goodness-of-fit or relative error measures (including the coefficient of efficiency and the index of agreement) that overcome many of the limitations of correlation-based measures are discussed. Modifications to these statistics to aid in interpretation are presented. It is concluded that correlation and correlation-based measures should not be used to assess the goodness-of-fit of a hydrologic or hydroclimatic model and that additional evaluation measures (such as summary statistics and absolute error measures) should supplement model evaluation tools. ¿ 1999 American Geophysical Union |