|
Detailed Reference Information |
Reed, P., Minsker, B. and Valocchi, A.J. (2000). Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation. Water Resources Research 36: doi: 10.1029/2000WR900232. issn: 0043-1397. |
|
A new methodology for sampling plan design has been developed to reduce the costs associated with long-term monitoring of sites with groundwater contamination. The method combines a fate-and-transport model, plume interpolation, and a genetic algorithm to identify cost-effective sampling plans that accurately quantify the total mass of dissolved contaminant. The plume interpolation methods considered were inverse-distance weighting, ordinary kriging, and a hybrid method that combines the two approaches. Application of the methodology to Hill Air Force Base indicated that sampling costs could be reduced by as much as 60% without significant loss in accuracy of the global mass estimates. Inverse-distance weighting was shown to be most effective as a screening tool for evaluating whether more comprehensive geostatistical modeling is warranted. The hybrid method was effective for implementing such a tiered approach, reducing computational time by more than 60% relative to kriging alone. ¿ 2000 American Geophysical Union |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Hydrology, Groundwater quality, Hydrology, Groundwater transport, Mathematical Geophysics, Modeling, Policy Sciences, System operation and management |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|