EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Brown et al. 2000
Brown, G.O., Hsieh, H.T. and Lucero, D.A. (2000). Evaluation of laboratory dolomite core sample size using representative elementary volume concepts. Water Resources Research 36: doi: 10.1029/2000WR900017. issn: 0043-1397.

The adequacy for laboratory testing of four dolomite cores from the Culebra Dolomite of the Rustler Formation at the Waste Isolation Pilot Plant near Carlsbad, New Mexico, were evaluated using representative elementary volume (REV) theory. Gamma ray computerized tomography created three-dimensional grids of bulk density and macropore index over volumes from 1.4¿10-7 to 1.6 L. Three different methods for both volume averaging and REV analysis were applied and compared. Both density and macropore index converged to single values with increasing volume, which meets the most common qualitative definition of a REV. Statistical test results for the relatively homogeneous samples indicate that volumes larger than 1 to 7 mL have constant properties. Contrarily, a highly varied sample required 250 and 373 mL to achieve invariant density and macropore characteristics, respectively. Prismatic volume averaging was found to be better than slice averaging, while a qualitative test for the REV provided similar results as a rigorous statistical method. All cores were larger than the REV but were significantly different from one another. This implies that multiple cores are necessary to determine the entire range of transport properties within the rock. ¿ 2000 American Geophysical Union

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, Groundwater transport, Hydrology, Instruments and techniques, Physical Properties of Rocks, Transport properties
Journal
Water Resources Research
http://www.agu.org/wrr/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit