|
Detailed Reference Information |
Balakrishnan, S., Roy, A., Ierapetritou, M.G., Flach, G.P. and Georgopoulos, P.G. (2003). Uncertainty reduction and characterization for complex environmental fate and transport models: An empirical Bayesian framework incorporating the stochastic response surface method. Water Resources Research 39: doi: 10.1029/2002WR001810. issn: 0043-1397. |
|
In this work, a computationally efficient Bayesian framework for the reduction and characterization of parametric uncertainty in computationally demanding environmental 3-D numerical models has been developed. The framework is based on the combined application of the Stochastic Response Surface Method (SRSM, which generates accurate and computationally efficient statistically equivalent reduced models) and the Markov chain Monte Carlo method. The application selected to demonstrate this framework involves steady state groundwater flow at the U.S. Department of Energy Savannah River Site General Separations Area, modeled using the Subsurface Flow And Contaminant Transport (FACT) code. Input parameter uncertainty, based initially on expert opinion, was found to decrease in all variables of the posterior distribution. The joint posterior distribution obtained was then further used for the final uncertainty analysis of the stream base flows and well location hydraulic head values. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Policy Sciences, Decision making under uncertainty, Hydrology, Groundwater transport, Hydrology, Stochastic processes, Mathematical Geophysics, Modeling |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|