|
Detailed Reference Information |
Crumpler, L.S. and Tanaka, K.L. (2003). Geology and MER target site characteristics along the southern rim of Isidis Planitia, Mars. Journal of Geophysical Research 108: doi: 10.1029/2002JE002040. issn: 0148-0227. |
|
The southern rim of the Isidis basin contains one of the highest densities of valley networks, several restricted paleolake basins, and the stratigraphically lowest (oldest) terrain on Mars. Geologic mapping in Viking, MGS/MOC, and MOLA data, Odyssey/THEMIS data, and other multispectral data products supports the presence of extensive fans of debris and sediments deposited along the inner rim of the Isidis basin where large valleys enter the lowlands. Additional processes subsequent to the period of intense fluvial activity, including mass flow analogous to some glacial processes, have contributed to the materials accumulated on the margins of the Isidis basin. These have occurred along preexisting channels and valleys at the termini of major channels where they enter the plains along the highland-lowland boundary. If the abundant valley networks in highland terrains are the result of runoff accompanied by saturated groundwater flow, as has been suggested in previous studies of ancient fluvial highland terrains, then the extreme age and abundance of early valley networks in the Libya Montes highland rocks should have resulted in deposition of materials that record evidence for the long-term presence of water in the form of aqueous alteration of polycrystalline constituents. The material deposited along the basin margin is likely to consist of ancient altered highland rocks in several physical states (weathered, rounded, and angular) exposing both weathered and altered surfaces, and exposures of alteration profiles in fractured faces and unweathered material from rock interiors. Debris fans shed off the southern rim of Isidis Planitia should contain materials that have experienced possible saturated groundwater flow, residence within paleolake basins, and derivative materials deposited during the most fluvially intensive part of Martian geologic history. Many of these materials have also been reworked by ice-related processes. In situ measurements of the ancient crustal materials, in the form of rocks within the debris fans, and the weathered condition of the rocky material are potential sources for mineralogical evidence of climatic conditions in earliest Martian geologic history. The absence of alteration within rocks would, on the other hand, support the hypothesis that fluvial runoff during the earliest history of Mars was geologically brief rather than long-term and that long-term saturated groundwater flow was not present. Determination of the presence or absence of alteration would have corresponding implications for hypotheses requiring the long-term presence of aqueous solutions (i.e., complex organic compounds and life). A proposed MER site along the margin addresses realistic field science objectives of the Mars Exploration Rover mission and the current goals of the Mars Exploration Program. In situ measurements may be important in deriving estimates of the longevity and intensity of past wetter climates. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Planetary Sciences, General or miscellaneous, Planetary Sciences, Remote sensing, Planetary Sciences, Erosion and weathering, Planetary Sciences, Glaciation, Planetology, Solar System Objects, Mars |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|