|
Detailed Reference Information |
Toomey, A., Bean, C.J. and Scotti, O. (2002). Fracture properties from seismic data – a numerical investigation. Geophysical Research Letters 29: doi: 10.1029/2001GL013867. issn: 0094-8276. |
|
In the upper 5--10 km of the crust fractures may remain partially open, exerting a strong influence over the response of their host material to seismic waves due to their superior deformability. This raises the possibility of using seismic data to determine not only the location but also the properties of fracture networks. We present a particle-based numerical scheme for modeling rock deformation and wave propagation and show that it accurately captures wave propagation across fractures. We investigate the effect of fracture tensile properties (i.e. fracture cohesion) on the wavefield and demonstrate that seismic data can, in theory, be used to distinguish fracture tensile and compressional properties. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Physical Properties of Rocks, Acoustic properties, Physical Properties of Rocks, Fracture and flow |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|