 |
Detailed Reference Information |
Dodd, N., Iranzo, V. and CaballerĂa, M. (2004). A subcritical instability of wave-driven alongshore currents. Journal of Geophysical Research 109: doi: 10.1029/2001JC001106. issn: 0148-0227. |
|
The development of shear instabilities of a wave-driven alongshore current is investigated. In particular, we use weakly nonlinear theory to investigate the possibility that such instabilities, which have been observed at various sites on the U.S. coast and in the laboratory, can grow in linearly stable flows as a subcritical bifurcation by resonant triad interaction, as first suggested by Shrira et al. <1997>. We examine a realistic longshore current profile and include the effects of eddy viscosity and bottom friction. We show that according to the weakly nonlinear theory, resonance is possible and that these linearly stable flows may exhibit explosive instabilities. We show that this phenomenon may occur also when there is only approximate resonance, which is more likely in nature. Furthermore, the size of the perturbation that is required to trigger the instability is shown in some circumstances to be consistent with the size of naturally occurring perturbations. Finally, we consider the differences between the present case examined and the more idealized case of Shrira et al. <1997>. It is shown that there is a possibility of coupling between triads, due to the richer modal structure in more realistic flows, which may act to stabilize the flow and act against the development of subcritical bifurcations. Extensive numerical tests are called for. |
|
 |
 |
BACKGROUND DATA FILES |
|
 |
Abstract |
|
 |
|
|
|
Keywords
Oceanography, Physical, Nearshore processes, Oceanography, Physical, Currents, Oceanography, General, Analytical modeling, nearshore oceanography, longshore current, instability |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
 |