|
Detailed Reference Information |
Millar, N., Ndufa, J.K., Cadisch, G. and Baggs, E.M. (2004). Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics. Global Biogeochemical Cycles 18: doi: 10.1029/2003GB002114. issn: 0886-6236. |
|
The rotation of crops with fast-growing tree, shrub, and herbaceous N2-fixing legume species (improved fallows) is a central agroforestry technology for soil fertility management in the humid tropics. Maize yields are increased following improved fallows compared with continuous maize cropping or traditional natural-fallow systems consisting of broadleaved weeds and grasses. However, the effect of these improved-fallow systems on N availability and N2O emissions following residue application has yet to be determined. Emissions from these systems not only have a detrimental effect on the environment, but are of additional concern in that they represent a potentially significant loss of N and a reduction in N-use efficiency. Emissions of N2O were measured from improved-fallow agroforestry systems in western Kenya, being characteristic of agroforestry systems in the humid tropics. Emissions were increased after incorporation of fallow residues and were higher after incorporation of improved-fallow legume residues (Sesbania sesban, Crotalaria grahamiana, Macroptilium atropurpureum) than natural-fallow residues (mainly consisting of Digitaria abyssibica, Habiscus cannabinus, Bidens pilosa, Guizotia scabra, Leonotis nepetifolia, Commelina benghalensis). Following incorporation of Sesbania and Macroptilium residues (7.4 t dry matter ha-1; 2.9% N) in a mixed fallow system, 4.1 kg N2O-N ha-1 was emitted over 84 days. The percentages of N applied emitted as N2O following residue incorporation in these tropical agroforestry systems were of the same magnitude as in temperate agricultural systems. N2O (loge) emissions were positively correlated with residue N content (r = 0.93; P < 0.05), and thus the residue composition, particularly its N content, is an important consideration when proposing management practices to mitigate N2O emissions from these systems. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Global Change, Biogeochemical processes, Meteorology and Atmospheric Dynamics, Land/atmosphere interactions, agroforestry, humid tropics, improved fallows, nitrous oxide, residue quality, soil mineral nitrogen |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|