EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Wilson et al. 2004
Wilson, D.J., Western, A.W. and Grayson, R.B. (2004). Identifying and quantifying sources of variability in temporal and spatial soil moisture observations. Water Resources Research 40. doi: 10.1029/2003WR002306. issn: 0043-1397.

Soil moisture is an important component of the hydrological cycle. It is a control in the partitioning of energy and water related to evapotranspiration and runoff and thereby influences the hydrological response of an area. Characterizing the temporal and spatial distribution of soil moisture has important hydrologic applications, yet soil moisture varies in response to many processes acting over a variety of scales; the relative importance of different temporal and spatial controls on soil moisture is still poorly understood. In this paper we analyze both temporal and spatial soil moisture data empirically for two catchments in Australia and a further three in New Zealand. Hydrological conditions at these field sites covered a wide range over a 2 year period. The ground-based soil moisture data set is unique in its temporal and, in particular, its spatial coverage. Analyses attempt to isolate and quantify different deterministic sources of variability, measurement error, and a remaining unexplained component of variability. Because of limited data (especially relating to soils) we take a pragmatic approach of removing patterns that we can define in time and space (namely, seasonality and terrain) and then analyzing the unexplained variation. We then look for consistent patterns in this unexplained variability and argue that these are related to meteorological conditions, especially precipitation events, in the temporal case, and a combination of soils and vegetation in the spatial case. We were able to explain most of the observed variance in time and space, and the temporal variance was typically 5 times larger than spatial variance. Seasonality is the dominant source of temporal variability at our sites, although this conclusion obviously depends on climate and does not hold where soil water storage is limited. Most importantly, in controlling the distribution of soil moisture in space, the spatial distribution of soils and vegetation seems to be of similar importance to that of topography, a fact often ignored in hydrological modeling, or else surrogate soils patterns are used, but these are often not well correlated to the actual patterns <Grayson and Bl¿schl, 2000>. Better methods for defining the spatial properties of soils and vegetation as they affect soil moisture patterns are a key challenge.

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, Soil moisture, Hydrology, Unsaturated zone, Hydrology, Runoff and streamflow, Soil moisture, temporal variability, spatial variability, seasonality
Journal
Water Resources Research
http://www.agu.org/wrr/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit