EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Friedrich et al. 2003
Friedrich, A.M., Wernicke, B.P., Niemi, N.A., Bennett, R.A. and Davis, J.L. (2003). Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. Journal of Geophysical Research 108: doi: 10.1029/2001JB000682. issn: 0148-0227.

The Wasatch fault and adjacent fault zones provide an opportunity to compare present-day deformation rate estimates obtained from space geodesy with geologic displacement rates over at least four temporal windows, ranging from the last millennium up to 10 Myr. The three easternmost GPS sites of the Basin and Range Geodetic Network (BARGEN) at this latitude define a ~130-km-wide region spanning three major normal faults extending east-west at a total rate of 2.7 ¿ 0.4 mm/yr, with an average regional strain rate estimated to be 21 ¿ 4 nstrain/yr, about twice the Basin and Range average. On the Wasatch fault, the vertical component of the geologic displacement rate is 1.7 ¿ 0.5 mm/yr since 6 ka, <0.6 mm/yr since 130 ka, and 0.5--0.7 mm/yr since 10 Ma. However, it appears likely that at the longest timescale, rates slowed over time, from 1.0 to 1.4 mm/yr between 10 and 6 Ma to 0.2 to 0.3 mm/yr since 6 Ma. The cumulative vertical displacement record across all three faults also shows time-variable strain release ranging from 2 to 4 mm/yr since 10 ka to <1 mm/yr averaged over the past 130 kyr. Conventional earthquake recurrence models (Reid-type behavior) would require an accordingly large variation in strain accumulation or loading rate on a 10-kyr timescale, for which there appears to be no obvious geophysical explanation. Alternatively, seismic strain release, given a wide range of plausible constitutive behaviors for frictional sliding, may be clustered on the 10-kyr timescale, resulting in the high Holocene rates, with comparatively low, uniform strain accumulation rates on the 100-kyr timescale (Wallace-type behavior). The latter alternative, combined with observations at the million-year timescale and the likelihood of a significant contribution of postseismic transients, implies maxima of spectral amplitude in the velocity field at periods of ~10 Myr (variations in tectonic loading), ~10 kyr (clustered strain release), and of 100 years (postseismic transients). If so, measurements of strain accumulation and strain release may be strongly timescale-dependent for any given fault system.

BACKGROUND DATA FILES

Abstract

Keywords
Geodesy and Gravity, Crustal movements--intraplate, Geodesy and Gravity, Space geodetic surveys, Seismology, Earthquake dynamics and mechanics, Tectonophysics, Continental neotectonics, Tectonophysics, Continental tectonics--extensional
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit