EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Gerstoft et al. 2003
Gerstoft, P., Rogers, L.T., Krolik, J.L. and Hodgkiss, W.S. (2003). Inversion for refractivity parameters from radar sea clutter. Radio Science 38: doi: 10.1029/2002RS002640. issn: 0048-6604.

This paper describes estimation of low-altitude atmospheric refractivity from radar sea clutter observations. The vertical structure of the refractive environment is modeled using five parameters, and the horizontal structure is modeled using six parameters. The refractivity model is implemented with and without an a priori constraint on the duct strength, as might be derived from soundings or numerical weather-prediction models. An electromagnetic propagation model maps the refractivity structure into a replica field. Replica fields are compared to the observed clutter using a squared-error objective function. A global search for the 11 environmental parameters is performed using genetic algorithms. The inversion algorithm is implemented on S-band radar sea-clutter data from Wallops Island, Virginia. Reference data are from range-dependent refractivity profiles obtained with a helicopter. The inversion is assessed (1) by comparing the propagation predicted from the radar-inferred refractivity profiles and from the helicopter profiles, (2) by comparing the refractivity parameters from the helicopter soundings to those estimated, and (3) by examining the fit between observed clutter and optimal replica field. This technique could provide near-real-time estimation of ducting effects. In practical implementations it is unlikely that range-dependent soundings would be available. A single sounding is used for evaluating the radar-inferred environmental parameters. When the unconstrained environmental model is used, the refractivity-from-clutter, the propagation loss generated and the loss from this single sounding, is close within the duct; however, above the duct they differ. Use of the constraint on the duct strength leads to a better match also above the duct.

BACKGROUND DATA FILES

Abstract

Keywords
Meteorology and Atmospheric Dynamics, Remote sensing, Radio Science, Atmospheric propagation, Radio Science, Remote sensing, Radio Science, Tomography and imaging
Journal
Radio Science
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit