EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Behrendt et al. 2002
Behrendt, J.C., Damaske, D., Finn, C.A., Kyle, P. and Wilson, T.J. (2002). Draped aeromagnetic survey in Transantarctic Mountains over the area of the Butcher Ridge igneous complex showing extent of underlying mafic intrusion. Journal of Geophysical Research 107. doi: 10.1029/2001JB000376. issn: 0148-0227.
A draped aeromagnetic survey over the area surrounding the Butcher Ridge igneous complex (BRIC), Transantarctic Mountains, was acquired in 1997--1998 as part of a larger Transantarctic Mountains Aerogeophysical Research Activity survey. The BRIC is a sill-like hypoabyssal intrusion ranging in composition from tholeiitic basalt to rhyolite. An 40Ar/39Ar age of 174 Ma and the chemical character of the basaltic rocks show the BRIC to be part of the widespread Jurassic Ferrar suite of continental tholeiitic rocks, that extends for 3500 km across Antarctica. The aeromagnetic survey shows a horseshoe-shaped pattern of anomalies reaching amplitudes as great as 1900 nT generally associated with the bedrock topography where it is exposed. It is apparent that the high-amplitude anomaly pattern is more extensive than the 10-km-long exposed outcrop, first crossed by a single 1990 aeromagnetic profile. The highest-amplitude anomalies appear south of the profile acquired in 1990 and extend out of the survey area. The new aeromagnetic data allow determination of the extent of the interpreted Butcher mafic(?) intrusion beneath exposures of Beacon sedimentary rock and ice in the area covered, as well as beneath the small BRIC exposure. The magnetic anomalies show a minimum area of 3000 km2, a much greater extent than previously inferred. Magnetic models indicate a minimum thickness of ~1--2 km for a horizontal intrusion. However, nonunique models with magnetic layers decreasing in apparent susceptibility with depth are consistent with of a 4- to 8-km-thick layered intrusion. These magnetic models indicate progressively deeper erosion of the interpreted mafic-layered body from the south to north. The erosion has removed more magnetic upper layers that mask the magnetic effects of the lower less magnetic layers. The probable minimum volume of the intrusion in the area of the survey is ~6000 km3. An alternate, but less likely, interpretation of a series of dikes can also fit the observed magnetic anomalies. A draped aeromagnetic survey over the area surrounding the Butcher Ridge igneous complex (BRIC), Transantarctic Mountains, was acquired in 1997--1998 as part of a larger Transantarctic Mountains Aerogeophysical Research Activity survey. The BRIC is a sill-like hypoabyssal intrusion ranging in composition from tholeiitic basalt to rhyolite. An 40Ar/39Ar age of 174 Ma and the chemical character of the basaltic rocks show the BRIC to be part of the widespread Jurassic Ferrar suite of continental tholeiitic rocks, that extends for 3500 km across Antarctica. The aeromagnetic survey shows a horseshoe-shaped pattern of anomalies reaching amplitudes as great as 1900 nT generally associated with the bedrock topography where it is exposed. It is apparent that the high-amplitude anomaly pattern is more extensive than the 10-km-long exposed outcrop, first crossed by a single 1
BACKGROUND DATA FILES

Abstract

Keywords
Geomagnetism and Paleomagnetism, Magnetic anomaly modeling, Structural Geology, Pluton emplacement, Tectonophysics, Continental tectonics--general, Information Related to Geographic Region, Antarctica
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit