EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Brümmer et al. 2002
Brümmer, B., Schröder, D., Launiainen, J., Vihma, T., Smedman, A.-S. and Magnusson, M. (2002). Temporal and spatial variability of surface fluxes over the ice edge zone in the northern Baltic Sea. Journal of Geophysical Research 107: doi: 10.1029/2001JC000884. issn: 0148-0227.

Three land-fast ice stations (one of them was the Finnish research ice breaker Aranda) and the German research aircraft Falcon were applied to measure the turbulent and radiation fluxes over the ice edge zone in the northern Baltic Sea during the Baltic Air-Sea-Ice Study (BASIS) field experiment from 16 February to 6 March 1998. The temporal and spatial variability of the surface fluxes is discussed. Synoptic weather systems passed the experimental area in a rapid sequence and dominated the conditions (wind speed, air-surface temperature difference, cloud field) for the variability of the turbulent and radiation fluxes. At the ice stations, the largest upward sensible heat fluxes of about 100 Wm-2 were measured during the passage of a cold front when the air cooled faster (-5 K per hour) than the surface. The largest downward flux of about -200 Wm-2 occurred during warm air advection when the air temperature reached +10¿C but the surface temperature remained at 0¿C. Spatial variability of fluxes was observed from the small scale (scale of ice floes and open water spots) to the mesoscale (width of the ice edge zone). The degree of spatial variability depends on the synoptic situation: during melting conditions downward heat fluxes were the same over ice and open water, whereas during strong cold-air advection upward heat fluxes differed by more than 100 Wm-2. A remarkable amount of grey ice with intermediate surface temperature was observed. The ice in the Baltic Sea cannot be described by one ice type only.

BACKGROUND DATA FILES

Abstract

Keywords
Meteorology and Atmospheric Dynamics, Boundary layer processes, Meteorology and Atmospheric Dynamics, Mesoscale meteorology, Meteorology and Atmospheric Dynamics, Turbulence, Oceanography, Physical, Ice mechanics and air/sea/ice exchange processes
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit