EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Cappa et al. 2003
Cappa, C.D., Hendricks, M.B., DePaolo, D.J. and Cohen, R.C. (2003). Isotopic fractionation of water during evaporation. Journal of Geophysical Research 108. doi: 10.1029/2003JD003597. issn: 0148-0227.

Variations in the isotopic content (18O/16O and D/H ratios) of water in the natural environment provide a valuable tracer of the present-day global hydrologic cycle and a record of the climate over at least 400,000 years that is preserved in glacial ice. The interpretation of observed isotopic ratios in water vapor, rain, snow, and ice depends on our understanding of the processes (mainly phase changes) that produce isotopic fractionation. Whereas equilibrium isotopic fractionation is well understood, kinetic effects, or diffusion-controlled fractionation, has a limited experimental foundation. Kinetic effects are significant during evaporation into unsaturated air and during condensation to form ice from vapor. Kinetic effects are also thought to control the deuterium excess (d = δD - 8δ18O) of precipitation. We describe experiments to observe kinetic effects associated with evaporation. Analysis of our own and previous experiments shows that surface cooling of the liquid is a crucial variable affecting fractionation from evaporating water that has not been properly considered before. Including the effects of evaporative surface cooling reconciles observed D/H fractionation with kinetic theory and removes the need to invoke an unusual size for the HDO molecule. Thus the isotopic molecular diffusivity ratios are D(H218O)/D(H216O) = 0.9691 and D(HD16O)/D(H216O) = 0.9839. Implications of this work for representation of kinetic fractionation in global circulation models and cloud physics models are briefly discussed.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Cloud physics and chemistry, Atmospheric Composition and Structure, Constituent sources and sinks, Global Change, Water cycles, Hydrology, General or miscellaneous
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit