EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Niinemets & Reichstein 2002
Niinemets, Ü. and Reichstein, M. (2002). A model analysis of the effects of nonspecific monoterpenoid storage in leaf tissues on emission kinetics and composition in Mediterranean sclerophyllous Quercus species. Global Biogeochemical Cycles 16: doi: 10.1029/2002GB001927. issn: 0886-6236.

Although monoterpenoid-emitting Quercus species lack specific terpene storage structures, they may store monoterpenoids in nonspecific leaf compartments. To determine whether such storage may influence emission responses to diurnal changes in environmental factors, a dynamic emission model including fast and slow storage pools in parallel was constructed. Existence of two storage pools was inferred from the circumstance that monoterpene efflux from darkened leaves was poorly described by single-exponential decay relationship, but was well parameterized by double exponentials. Simulations indicated that nonspecific terpenoid storage may significantly alter daily monoterpenoid emission both at leaf and canopy scales. The model also described shifts in fractional monoterpenoid composition after changes in environmental factors that cannot be explained by current algorithms. Time constants for the fast pool were negatively associated with monoterpenoid equilibrium gas/water partition coefficient (H), suggesting that the fast pool is in leaf liquid phase. The time constants for the slow pool were independent of H, but scaled positively with monoterpenoid octanol/water partition coefficient, indicating that this pool is in lipid phase. Based on tentative pool locations and monoterpenoid physico-chemical characteristics, time constants of various pools were computed using a flow/conductance model. Although the time constants were correlated, the theoretical estimates were larger than those derived empirically. Nonhomogeneous monoterpenoid distribution, aggregation within leaf liquid phase, and adsorption to apoplast surfaces that all decrease the area for diffusion and decrease the effective diffusion coefficients likely explain this discrepancy. We conclude that physico-chemical models are needed to parameterize nonspecific storage effects on monoterpene emission dynamics and emission composition.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Atmospheric Composition and Structure, Troposphere--composition and chemistry, Global Change, Biogeochemical processes, Global Change, Atmosphere (0315, 0325)
Journal
Global Biogeochemical Cycles
http://www.agu.org/journals/gb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit