EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Baisden et al. 2002
Baisden, W.T., Amundson, R., Brenner, D.L., Cook, A.C., Kendall, C. and Harden, J.W. (2002). A multiisotope C and N modeling analysis of soil organic matter turnover and transport as a function of soil depth in a California annual grassland soil chronosequence. Global Biogeochemical Cycles 16: doi: 10.1029/2001GB001823. issn: 0886-6236.

We examine soil organic matter (SOM) turnover and transport using C and N isotopes in soil profiles sampled circa 1949, 1978, and 1998 (a period spanning pulse thermonuclear 14C enrichment of the atmosphere) along a 3-million-year annual grassland soil chronosequence. Temporal differences in soil Δ14C profiles indicate that inputs of recently living organic matter (OM) occur primarily in the upper 20--30 cm but suggest that OM inputs can occur below the primary rooting zone. A three-pool SOM model with downward transport captures most observed variation in Δ14C, percentages of C and N, δ13C, and δ15N, supporting the commonly accepted concept of three distinct SOM pools. The model suggests that the importance of the decadal SOM pool in N dynamics is greatest in young and old soils. Altered hydrology and possibly low pH and/or P dynamics in highly developed old soils cause changes in soil C and N turnover and transport of importance for soil biogeochemistry models.

BACKGROUND DATA FILES

Abstract

Keywords
Global Change, Biogeochemical processes, Global Change, Instruments and techniques, Hydrology, Anthropogenic effects, Information Related to Geographic Region, North America
Journal
Global Biogeochemical Cycles
http://www.agu.org/journals/gb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit