|
Detailed Reference Information |
St. Laurent, L.C., Simmons, H.L. and Jayne, S.R. (2002). Estimating tidally driven mixing in the deep ocean. Geophysical Research Letters 29: doi: 10.1029/2002GL015633. issn: 0094-8276. |
|
Using a parameterization for internal wave energy flux in a hydrodynamic model for the tides, we estimate the global distribution of tidal energy available for enhanced turbulent mixing. A relation for the diffusivity of vertical mixing is formulated for regions where internal tides dissipate their energy as turbulence. We assume that 30 ¿ 10% of the internal tide energy flux dissipates as turbulence near the site of generation, consistent with an estimate based on microstructure observations from a mid-ocean ridge site. Enhanced levels of mixing are modeled to decay away from topography, in a manner consistent with these observations. Parameterized diffusivities are shown to resemble observed abyssal mixing rates, with estimated uncertainties comparable to standard errors associated with budget and microstructure methods. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Oceanography, Physical, Turbulence, diffusion, and mixing processes, Oceanography, Physical, Internal and inertial waves, Oceanography, Physical, Fine structure and microstructure |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|