|
Detailed Reference Information |
Werner, M., Tegen, I., Harrison, S.P., Kohfeld, K.E., Prentice, I.C., Balkanski, Y., Rodhe, H. and Roelandt, C. (2002). Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions. Journal of Geophysical Research 107: doi: 10.1029/2002JD002365. issn: 0148-0227. |
|
We present simulations of the dust cycle during present and glacial climate states, using a model, which explicitly simulates the control of dust emissions as a function of seasonal and interannual changes in vegetation cover. The model produces lower absolute amounts of dust emissions and deposition than previous simulations of the Last Glacial Maximum (LGM) dust cycle. However, the simulated 2- to 3-fold increase in emissions and deposition at the LGM compared to today, is in agreement with marine- and ice-core observations, and consistent with previous simulations. The mean changes are accompanied by a prolongation of the length of the season of dust emissions in most source regions. The increase is most pronounced in Asia, where LGM dust emissions are high throughout the winter, spring and summer rather than occurring primarily in spring as they do today. Changes in the seasonality of dust emissions, and hence atmospheric loading, interact with changes in the seasonality of precipitation, and hence of the relative importance of wet and dry deposition processes at high northern latitudes. As a result, simulated dust deposition rates in the high northern latitudes show high interannual variability. Our results suggest that the high dust concentration variability shown by the Greenland ice core records during the LGM is a consequence of changes in atmospheric circulation and precipitation locally rather than a result of changes in the variability of dust emissions. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801), Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Global Change, Biogeochemical processes, Meteorology and Atmospheric Dynamics, General circulation, Meteorology and Atmospheric Dynamics, Paleoclimatology |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|