EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Hecht et al. 2004
Hecht, J.H., Liu, A.Z., Bishop, R.L., Clemmons, J.H., Gardner, C.S., Larsen, M.F., Roble, R.G., Swenson, G.R. and Walterscheid, R.L. (2004). An overview of observations of unstable layers during the Turbulent Oxygen Mixing Experiment (TOMEX). Journal of Geophysical Research 109: doi: 10.1029/2002JD003123. issn: 0148-0227.

The Turbulent Oxygen Mixing Experiment (TOMEX) was designed to measure the atmospheric response to the existence of unstable layers as determined by wind and temperature measurements from 80 to 105 km. TOMEX combined Na lidar measurements, from Starfire Optical Range in Albuquerque, New Mexico, with a launch of a payload from White Sands Missile Range, located between 100 and 150 km south of Starfire. The payload included a trimethyl aluminum chemical release to measure winds and diffusion, a 5-channel ionization gauge to measure neutral density fluctuations at high vertical resolution, and a 3-channel photometer experiment to measure atomic oxygen related airglow. The rocket was launched when the lidar data indicated the presence of convectively and dynamically unstable regions between 80 and 100 km altitude. For several hours prior to the launch, there had existed a large amplitude atmospheric gravity wave or tide which brought the background atmosphere into being nearly convectively unstable over the 85 to 95 km region. In addition a large overturning in Na density, possibly due to a convective roll, existed at altitudes around 100 km. This type of instability had not been previously seen and identified in this altitude region. The TOMEX payload measured the existence of Kelvin-Helmholz billows, enhanced neutral density fluctuations, enhanced energy dissipation, and well-mixed regions. These features were associated with convectively unstable regions, dynamically unstable regions, convective rolls, and the presence of this large wave. The unstable regions were persistent and covered large vertical (and horizontal regions) of the atmosphere. The atmospheric mixing and energy dissipation appeared to be largely determined by the presence and nature of these instabilities.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Airglow and aurora, Meteorology and Atmospheric Dynamics, Mesospheric dynamics, Meteorology and Atmospheric Dynamics, Turbulence, Meteorology and Atmospheric Dynamics, Waves and tides, Meteorology and Atmospheric Dynamics, Instruments and techniques, composition, mesospheric dynamics, turbulence
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit