EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
McKnight et al. 2002
McKnight, D.M., Hornberger, G.M., Bencala, K.E. and Boyer, E.W. (2002). In-stream sorption of fulvic acid in an acidic stream: A stream-scale transport experiment. Water Resources Research 38: doi: 10.1029/2001WR000269. issn: 0043-1397.

The variation of concentration and composition of dissolved organic carbon (DOC) in stream waters cannot be explained solely on the basis of soil processes in contributing subcatchments. To investigate in-stream processes that control DOC, we injected DOC-enriched water into a reach of the Snake River (Summit County, Colorado) that has abundant iron oxyhydroxides coating the streambed. The injected water was obtained from the Suwannee River (Georgia), which is highly enriched in fulvic acid. The fulvic acid from this water is the standard reference for aquatic fulvic acid for the International Humic Substances Society and has been well characterized. During the experimental injection, significant removal of sorbable fulvic acid occurred within the first 141 m of stream reach. We coinjected a conservative tracer (lithium chloride) and analyzed the results with the one-dimensional transport with inflow and storage (OTIS) stream solute transport model to quantify the physical transport mechanisms. The downstream transport of fulvic acid as indicated by absorbance was then simulated using OTIS with a first-order kinetic sorption rate constant applied to the sorbable fulvic acid. The sorbable fraction of injected fulvic acid was irreversibly sorbed by streambed sediments at rates (kinetic rate constants) of the order of 10-4--10-3 s-1. In the injected Suwannee River water, sorbable and nonsorbable fulvic acid had distinct chemical characteristics identified in 13C-NMR spectra. The 13C-NMR spectra indicate that during the experiment, the sorbable signal of greater aromaticity and carboxyl content decreased downstream; that is, these components were preferentially removed. This study illustrates that interactions between the water and the reactive surfaces will modify significantly the concentration and composition of DOC observed in streams with abundant chemically reactive surfaces on the streambed and in the hyporheic zone.

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, Chemistry of fresh water, Hydrology, Surface water quality, Geochemistry, Organic geochemistry
Journal
Water Resources Research
http://www.agu.org/wrr/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit