EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
de Hon & Bingle 2003
de Hon, B.P. and Bingle, M. (2003). A modal impedance-angle formalism: Schemes for accurate graded-index bent-slab calculations and optical fiber mode counting. Radio Science 38: doi: 10.1029/2001RS002570. issn: 0048-6604.

The propagation coefficients of guided modes along bent slabs and optical fibers may be calculated with the aid of a complex-power-flow, variational scheme. This scheme can be cast in the form of a Newton iterative scheme for a characteristic equation in terms of impedances rather than fields. Singularities of the associated Riccati equations for the impedances are circumvented via a generalized coordinate transformation, involving an angle for bent slabs, or a matrix of angles for optical fibers. Adopting the resulting impedance-angle formalism for bent slabs, numerical difficulties disappear, and accuracy ensues. The analysis of the vectorial optical-fiber problem benefits from its scalar bent-slab counterpart. In particular, the connection between the power flow and the impedance-angle formalism forms the physical underpinning for understanding that beyond a certain distance from the fiber core the derivative of the impedance matrix with respect to the propagation coefficient is positive definite. In turn, this provides the basis for the full-wave generalization for optical fibers of the mode-counting scheme developed in 1975 by Kuester and Chang for scalar wave propagation along a straight slab. With these key results, root-finding can be rendered more robust and efficient. A companion paper contains the necessary proofs for the complex-power-flow variational scheme and the mode-counting and mode-bracketing theorems.

BACKGROUND DATA FILES

Abstract

Keywords
Electromagnetics, Electromagnetic theory, Electromagnetics, Guided waves, Electromagnetics, Numerical methods, Electromagnetics, Optics, Electromagnetics, Wave propagation
Journal
Radio Science
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit