|
Detailed Reference Information |
Kang, Q., Zhang, D. and Chen, S. (2003). Simulation of dissolution and precipitation in porous media. Journal of Geophysical Research 108: doi: 10.1029/2003JB002504. issn: 0148-0227. |
|
We apply the lattice-Boltzmann method to simulate fluid flow and dissolution and precipitation in the reactive solid phase in a porous medium. Both convection and diffusion as well as temporal geometrical changes in the pore space are taken into account. The numerical results show that at high Peclet and Peclet-Damkohler numbers, a wormhole is formed and permeability increases greatly because of the dissolution process. At low Peclet and high Peclet-Damkohler numbers, reactions mainly occur at the inlet boundary, resulting in the face dissolution and the slowest increase of the permeability in the dissolution process. At moderate Peclet and Peclet-Damkohler numbers, reactions are generally nonuniform, with more in the upstream and less in the downstream. At very small Peclet-Damkohler number, dissolution or precipitation is highly uniform, and these two processes can be approximately reversed by each other. These numerical examples have not been yet confirmed by physical experimentation. Nevertheless, we believe that these simulation results can serve to estimate the effects of dissolution and precipitation during reactive fluid flow. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Hydrology, Erosion and sedimentation, Physical Properties of Rocks, Fracture and flow, Physical Properties of Rocks, Permeability and porosity |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|