 |
| Detailed Reference Information |
|
Golombek, M.P., Haldemann, A.F.C., Forsberg-Taylor, N.K., DiMaggio, E.N., Schroeder, R.D., Jakosky, B.M., Mellon, M.T. and Matijevic, J.R. (2003). Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations. Journal of Geophysical Research 108: doi: 10.1029/2002JE002035. issn: 0148-0227. |
|
|
The cumulative fractional area covered by rocks versus diameter measured at the Pathfinder site was predicted by a rock distribution model that follows simple exponential functions that approach the total measured rock abundance (19%), with a steep decrease in rocks with increasing diameter. The distribution of rocks >1.5 m diameter visible in rare boulder fields also follows this steep decrease with increasing diameter. The effective thermal inertia of rock populations calculated from a simple empirical model of the effective inertia of rocks versus diameter shows that most natural rock populations have cumulative effective thermal inertias of 1700--2100 J m-2 s-0.5 K-1 and are consistent with the model rock distributions applied to total rock abundance estimates. The Mars Exploration Rover (MER) airbags have been successfully tested against extreme rock distributions with a higher percentage of potentially hazardous triangular buried rocks than observed at the Pathfinder and Viking landing sites. The probability of the lander impacting a >1 m diameter rock in the first 2 bounces is 1.5 m and >2 m diameter, respectively. Finally, the model rock size-frequency distributions indicate that rocks >0.1 m and >0.3 m in diameter, large enough to place contact sensor instruments against and abrade, respectively, should be plentiful within a single sol's drive at the Meridiani and Gusev landing sites. |
|
 |
 |
| BACKGROUND DATA FILES |
|
 |
Abstract |
|
 |
|
|
|
Keywords
Planetology, Solar System Objects, Mars, Planetary Sciences, Surface materials and properties, Planetary Sciences, Remote sensing, Planetary Sciences, Physical properties of materials |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
 |