|
Detailed Reference Information |
Gersonde, R., Abelmann, A., Brathauer, U., Becquey, S., Bianchi, C., Cortese, G., Grobe, H., Kuhn, G., Niebler, H.-S., Segl, M., Sieger, R., Zielinski, U. and Fütterer, D.K. (2003). Last glacial sea surface temperatures and sea-ice extent in the Southern Ocean (Atlantic-Indian sector): A multiproxy approach. Paleoceanography 18: doi: 10.1029/2002PA000809. issn: 0883-8305. |
|
On the basis of the quantitative study of diatom, radiolarian, and planktic foraminiferal assemblages, we estimated summer sea surface temperature (SSST) and sea-ice extent at 50 sediment core localities in the Atlantic and western Indian sector of the Southern Ocean to reconstruct the last glacial environment at the GLAMAP (18 to 15 ka, equal to 21,500 to 18,000 calendar (cal) years BP) and EPILOG (19.5 to 16.0 ka, equal to 23,000 to 19,000 cal years BP) time slices. Stratigraphic identification of the time slices was accomplished by a combination of AMS 14C measurements, benthic isotope, and siliceous microfossil abundance records. While the SSST estimates reveal greater surface water cooling than reconstructed by CLIMAP <1981>, reaching a maximum in the area of the present Subantarctic Zone, the sea-ice reconstruction indicates that CLIMAP overestimated the expansion of the Antarctic sea-ice field, especially for austral summer. During winter the sea-ice field was expanded by 60--70% compared to the present. Last glacial summer sea surface isotherms indicate a northward shift of the zonal bands of the Antarctic Circumpolar Current and a relative expansion of the cold water realm south of the Subantarctic Front by ~5¿ in latitude. This coincides with a northward displacement of the zone of enhanced biogenic silica deposition and iceberg occurrence. As a result of northward expansion of Antarctic cold waters and a relatively small displacement of the Subtropical Front, thermal gradients were steepened during the last glacial in the area of the present Subtropical Front. The northward displacement of Antarctic cold waters and the related deflection of Southern Ocean waters along the eastern boundary of South America may have resulted in a weakened cold water route across the Drake Passage. In contrast, the transport of warm and salty surface water from the Indian into the Atlantic Ocean via the warm water route was not blocked allowing continuous but reduced import of heat into the South Atlantic. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Marine Geology and Geophysics, Micropaleontology, Meteorology and Atmospheric Dynamics, Paleoclimatology, Oceanography, General, Arctic and Antarctic oceanography, Oceanography, General, Paleoceanography |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|