EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Taroyan & Erdélyi 2003
Taroyan, Y. and Erdélyi, R. (2003). Steady state excitation of field line resonances by global waveguide modes in the magnetosphere. Journal of Geophysical Research 108: doi: 10.1029/2003JA009935. issn: 0148-0227.

A major shortcoming of theories of long-period magnetic pulsations is the separate treatment of the problems of wave excitation and resonant coupling. This could account for many substantial discrepancies between the waveguide/cavity mode theories and observations. A unified approach leading to a new type of field line resonance excitation mechanism is presented. It is shown that in a steady state the direct coupling of the waveguide modes to the local field line oscillations provides a natural and very efficient transfer of energy from the magnetosheath flow to the shear Alfv¿n waves deep within the magnetosphere even in the ideal magnetohydrodynamic limit. The role of ionospheric dissipation is examined, and many well-known observational features are recovered. The e-folding lengths of the generated waves are estimated. The presented mechanism of energy transport from the velocity shear into resonant Alfv¿n waves could play an important role in many applications of solar-terrestrial physics and astrophysics.

BACKGROUND DATA FILES

Abstract

Keywords
Magnetospheric Physics, MHD waves and instabilities, Magnetospheric Physics, Solar wind/magnetosphere interactions, Magnetospheric Physics, Magnetosphere/ionosphere interactions
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit