EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Harper & Humphrey 2003
Harper, J.T. and Humphrey, N.F. (2003). High altitude Himalayan climate inferred from glacial ice flux. Geophysical Research Letters 30: doi: 10.1029/2003GL017329. issn: 0094-8276.

Glaciological processes are modeled to investigate precipitation patterns and the resulting mass flux of snow and ice across Himalayan topography. Our model tracks the accumulation and ablation of snow and ice and the transport of snow and ice across the topography by glacier motion. We investigate high elevation precipitation on the Annapurna Massif by comparing the existing ice cover with model-simulated glaciers produced by a suite of different precipitation scenarios. Our results suggest that precipitation reaches a maximum level well below the elevation of the highest peaks. Further, essentially no snow accumulates on the topography above an elevation of 6200--6300 m. Hence, the upper 1000+ m of the massif is a high elevation desert with little flux of snow and ice. Active glaciers are limited to a band of intermediate elevations where a maximum of about 60% of the landscape is covered by moving ice.

BACKGROUND DATA FILES

Abstract

Keywords
Hydrology, Snow and ice, Meteorology and Atmospheric Dynamics, Precipitation, Hydrology, Precipitation, Global Change, Geomorphology and weathering (1824, 1886)
Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit