|
Detailed Reference Information |
Kelley, M.C., Makela, J.J., Paxton, L.J., Kamalabadi, F., Comberiate, J.M. and Kil, H. (2003). The first coordinated ground- and space-based optical observations of equatorial plasma bubbles. Geophysical Research Letters 30: doi: 10.1029/2003GL017301. issn: 0094-8276. |
|
We report on ionospheric optical emissions detected by the GUVI instrument on the TIMED satellite. As the satellite crosses the equatorial zone the bright Appleton Anomaly region is imaged. Often these bright zones are interrupted by regions slanted from west to east as the equator is approached forming a backwards 'C'-shape in the image. To explain this feature we use simultaneous ground-based observations looking equatorward from Hawaii using the 777.4-nm emission. We also compare these optical observations to inverted electron density maps, as well as to those made by radar and to numerical simulations of the Rayleigh-Taylor instability. The characteristic shape is a result of a shear in the eastward plasma flow velocity, which peaks near the F peak at the equator and decreases both above and below that height. The ability to detect these unstable and usually turbulent ionospheric regions from orbit provides a powerful global remote sensing capability for an important space weather process. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Ionosphere, Equatorial ionosphere, Ionosphere, Ionospheric irregularities, Ionosphere, Midlatitude ionosphere, Ionosphere, Instruments and techniques |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|