EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Lubin et al. 2003
Lubin, D., Lynch, S., Clarke, R., Morrow, E. and Hart, S. (2003). Increasing reflectivity of the Antarctic ocean-atmosphere system: Analysis of Total Ozone Mapping Spectrometer (TOMS) and passive microwave data for 1979–1994. Journal of Geophysical Research 108: doi: 10.1029/2002JD002702. issn: 0148-0227.

Measurements of Lambert equivalent reflectance at 380 nm from the Total Ozone Mapping Spectrometer (TOMS) instrument have shown increases in reflectivity between 1979 and 1994 over much of the Southern Ocean, encompassing 280¿ in longitude. These trends represent a possible change in the state of the Antarctic ocean-atmosphere system related to recent climate warming. To determine if these reflectivity trends are due to changes in cloud cover or sea ice, or both, the TOMS data were collocated with a contemporaneous passive microwave satellite data set from the scanning multichannel microwave radiometer and the Special Sensor Microwave Imager. The passive microwave data sets specify total sea ice concentration, retrieved by a uniform method for all years using the NASA Team algorithm. To first order the locations of TOMS reflectivity increases coincide with regions where sea ice concentration has increased over the past 2 decades, signifying that the TOMS trends are the result of trends in underlying sea ice and not cloud cover. However, when the TOMS reflectivity measurements are sorted into fixed sea ice concentration bins of 0.1 width, the TOMS data also show increasing reflectivity trends in regions where sea ice extent has been decreasing (Amundsen and Bellingshausen Seas and the Western Antarctic Peninsula). Over open water, TOMS reflectivity trends are less convincing and may be artifacts related to uncertainties in passive microwave sea ice identification. These results suggest that a significant component of the Southern Ocean TOMS reflectivity trends may be a gradual increase in the albedo of the underlying sea ice. This could be caused by a gradual lengthening of the sea ice season, with a concomitant increase in the persistence of dry snow on the sea ice cover.

BACKGROUND DATA FILES

Abstract

Keywords
Meteorology and Atmospheric Dynamics, Polar meteorology, Meteorology and Atmospheric Dynamics, Ocean/atmosphere interactions (0312, 4504), Meteorology and Atmospheric Dynamics, Remote sensing, Information Related to Geographic Region, Antarctica
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit