EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Reid et al. 2003
Reid, J.S., Jonsson, H.H., Maring, H.B., Smirnov, A., Savoie, D.L., Cliff, S.S., Reid, E.A., Livingston, J.M., Meier, M.M., Dubovik, O. and Tsay, S. (2003). Comparison of size and morphological measurements of coarse mode dust particles from Africa. Journal of Geophysical Research 108: doi: 10.1029/2002JD002485. issn: 0148-0227.

A multitude of sensitivity studies in the literature point to the importance of proper chemical and morphological characterization of particles when the radiative impacts of airborne dusts are modeled. However, the community data set is based on heterogeneous measurement methods relying on varying aerodynamic, chemical, morphological, and optical means. During the Puerto Rico Dust Experiment, size distributions of dust particles from Africa were measured using a variety of aerodynamic, optical, and geometric means. Consistent with the literature, comparisons of these size distributions showed quite dissimilar results. Measured volume median diameters varied from 2.5 to 9 ¿m for various geometric, aerodynamic, optical, and optical inversion methods. Aerodynamic systems showed mixed performance. Column integrated size distributions inverted from AERONET Sun/sky radiance data produced somewhat reasonable results in the coarse mode when given proper constraints and taken in the proper context. The largest systematic errors were found in optical particle counters due to insensitivities to particle size in the 4--10 ¿m region with further complications due to dust particle morphology and index of refraction issues. As these methods can produce quite dissimilar size distributions, considerable errors in calculated radiative properties can occur if incorrectly modeled into dust parameters. None of the methods compared in this study can adequately reproduce the measured mass extinction or mass scattering efficiency of the dust using spherical geometry methods. Given all of the uncertainties in the sizing methods, we promote the use of fundamental and quantifiable descriptors of particles such as mass as a function of aerodynamic diameter.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Aerosols and particles (0345, 4801), Atmospheric Composition and Structure, Geochemical cycles, Atmospheric Composition and Structure, Transmission and scattering of radiation, Atmospheric Composition and Structure, Troposphere--constituent transport and chemistry
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit