|
Detailed Reference Information |
Kiefer, B., Stixrude, L. and Wentzcovitch, R.M. (2002). Elasticity of (Mg,Fe)SiO3-Perovskite at high pressures. Geophysical Research Letters 29: doi: 10.1029/2002GL014683. issn: 0094-8276. |
|
We calculated the elasticity of (Mg,Fe)SiO3-perovskite, using the plane-wave pseudopotential method for a pressure range that encompasses the earth's lower mantle. Adding 25 mol% FeSiO3 to the Mg endmember decreases the shear modulus by 6% at zero pressure and by 8% at core mantle boundary pressures. The bulk modulus is less affected by iron, increasing by 2% at zero pressure and by 1% at the base of the mantle. For the isotropically averaged wave velocities we find that the compressional wave velocity decreases by 4% independent of pressure and the shear wave velocity decreases by 6% and 7% at zero pressure and at 136 GPa, repectively. For the relative variation of shear to compressional velocities at constant pressure due to variations in Fe-content we find R = 1.6 at 136 GPa and for the relative variation of shear to bulk sound velocities we find ξ = 2.6 at 136 GPa. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Mineral Physics, Equations of state, Mineral Physics, High-pressure behavior, Mineral Physics, Elasticity and anelasticity, Seismology, Core and mantle |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|