The enlargement of initially small fractures in a karst aquifer by chemical dissolution is studied. Flow in the aquifer is driven by head differences between sinks and resurgences, and flow depends on the permeability of small fissures and fractures in the aquifer. Enlargement of fractures is controlled by the chemical composition of the recharge, as water undersaturated with respect to calcite is able to dissolve material from the fracture walls. As fractures are enlarged with time, permeability within the aquifer increases significantly, and flow becomes very heterogeneous. Two different processes are considered: enlargement due to normal corrosion, where water is undersaturated with respect to calcite, and enlargement due to mixing corrosion, where two solutions saturated with respect to calcite but with different carbon dioxide concentrations mix and the resulting solution becomes undersaturated again. The importance of mixing corrosion is discussed for two boundary conditions: A natural karst aquifer is modeled with fixed recharge boundary conditions representing sinking streams, and an artificial karst aquifer is simulated with fixed head boundary conditions representing a reservoir. In both cases, mixing corrosion is important, especially if recharge is characterized by an almost saturated chemistry. Mixing corrosion significantly changes the evolving passage pattern, as dissolution due to mixing of solutions is possible deep in the aquifer. Mixing corrosion also reduces breakthrough times of the aquifer and can result in dramatic leakage underneath dam sites, even if the impounded water is almost saturated with respect to calcite. |