|
Detailed Reference Information |
Antretter, M., Fuller, M., Scott, E., Jackson, M., Moskowitz, B. and Solheid, P. (2003). Paleomagnetic record of Martian meteorite ALH84001. Journal of Geophysical Research 108: doi: 10.1029/2002JE001979. issn: 0148-0227. |
|
The natural remanent magnetization (NRM) of the Martian meteorite ALH84001 is predominantly carried by fine magnetite, which is found in association with carbonate. The magnetite is in epitaxial and topotactic relation with the carbonate and formed from the carbonate in the major impact event at 4.0 Ga. The NRM will therefore record this field. The local preferential crystallographic and shape alignment of the magnetite defines local easy directions of magnetization may account for the observed inhomogeneity of the NRM on a microscopic scale. Normalizing the intensity of the NRM by the saturation isothermal remanence (IRMs) then gives an estimate for the 4.0 Ga Martian field one order smaller than the present geomagnetic field. Such a field is unlikely to be strong enough to generate the high-intensity Martian magnetic anomalies. ALH 84001 in its pristine state as an orthopyroxenite is not a plausible source rock for the Martian anomalies because its magnetite was not formed until the 4.0 Ga event. The natural remanent magnetization (NRM) of the Martian meteorite ALH84001 is predominantly carried by fine magnetite, which is found in association with carbonate. The magnetite is in epitaxial and topotactic relation with the carbonate and formed from the carbonate in the major impact event at 4.0 Ga. The NRM will therefore record this field. The local preferential crystallographic and shape alignment of the magnetite defines local easy directions of magnetization may account for the observed inhomogeneity of the NRM on a microscopic scale. Normalizing the intensity of the NRM by the saturation isothermal remanence (IRMs) then gives an estimate for the 4.0 Ga Martian field one order smaller than the present geomagnetic field. Such a field is unlikely to be strong enough to generate the high-intensity Martian magnetic anomalies. ALH 84001 in its pristine state as an orthopyroxenite is not a plausible source rock for the Martian anomalies because its magnetite was not formed until the 4.0 Ga event. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Planetology, Solar System Objects, Meteorites and tektites, Planetology, Solar System Objects, Mars, Planetary Sciences, Magnetic fields and magnetism, Geomagnetism and Paleomagnetism, Magnetic mineralogy and petrology, Geomagnetism and Paleomagnetism, Remagnetization |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|