|
Detailed Reference Information |
Day, D.A., Wooldridge, P.J., Dillon, M.B., Thornton, J.A. and Cohen, R.C. (2002). A thermal dissociation laser-induced fluorescence instrument for in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3. Journal of Geophysical Research 107: doi: 10.1029/2001JD000779. issn: 0148-0227. |
|
This paper describes a new instrument that uses a combination of thermal dissociation and laser-induced fluorescence detection of NO2 for in situ detection of the sum total peroxy nitrates, the sum total of alkyl nitrates and hydroxyalkyl nitrates, and HNO3. The instrument is capable of routine, continuous in situ measurements of these three classes of compounds that are accurate (15%) with a low detection limit (90 parts per trillion (ppt) 10 s-1, S/N ratio = 2 on a background of 1 ppb NO2 and 30 ppt 10 s-1 on a background of 100 ppt NO2). Theoretical analysis of potential interferences combined with laboratory experiments that test for interferences show that rapidly cooling the gas and dropping the pressure after the thermal dissociation reduces interferences to the order of 1--5%. Observations in ambient air at the University of California Blodgett Forest Research Station demonstrate the capabilities of this instrument under field conditions. These field observations are compared with independent total NOy observations. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Atmospheric Composition and Structure, Chemical kinetic and photochemical properties, Atmospheric Composition and Structure, Troposphere--composition and chemistry, Atmospheric Composition and Structure, Instruments and techniques, Global Change, Instruments and techniques |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|