EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Lanci & Kent 2003
Lanci, L. and Kent, D.V. (2003). Introduction of thermal activation in forward modeling of hysteresis loops for single-domain magnetic particles and implications for the interpretation of the Day diagram. Journal of Geophysical Research 108: doi: 10.1029/2001JB000944. issn: 0148-0227.

Synthetic hysteresis loops were generated by numerically solving the classical Stoner-Wohlfarth model and a thermally activated Stoner-Wohlfarth model for a set of randomly oriented magnetic grains. Although computationally intensive this method allows forward modeling of hysteresis loops of single-domain (SD) and viscous grains. In the classic Stoner-Wohlfarth model the shape of the modeled loops can be modified by changing the distribution of the anisotropy energy but all the loops will all have similar hysteresis parameters Msr/Ms and Hcr/Hc corresponding to that of a theoretical assemblage of SD particles. The thermally activated Stoner-Wohlfarth model, which allows the magnetic moment of each grain to switch between two energy minima according to Boltzmann statistics, extends the SD model toward superparamagnetic (SP) grains and introduces a volume dependency. Numerical simulation using the thermally activated model shows that the shapes of SD loops are modified by the effect of the thermal energy if the particles are sufficiently small. The major effect of the thermal disturbance is observed in highly viscous particles (smaller than approximately 0.03 ¿m in diameter, for magnetite) where it strongly reduces the coercivity and to a lesser extent the remanent magnetization. The effect on the hysteresis parameters is a large increase in Hcr/Hc and a decrease in Msr/Ms, by factors that vary with anisotropy distribution, grain volume and measurement time. For certain grain sizes, these result in hysteresis parameters that are similar to those attributed to pseudosingle-domain (PSD) grains.

BACKGROUND DATA FILES

Abstract

Keywords
Geomagnetism and Paleomagnetism, Rock and mineral magnetism, Geomagnetism and Paleomagnetism, Magnetic mineralogy and petrology, Geomagnetism and Paleomagnetism, Environmental magnetism, Geomagnetism and Paleomagnetism, Instruments and techniques, Geomagnetism and Paleomagnetism, General or miscellaneous
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit