|
Detailed Reference Information |
Ji, S., Yeo, I.W., Lee, K. and Glass, R.J. (2003). Influence of ambient groundwater flow on DNAPL migration in a fracture network: Experiments and simulations. Geophysical Research Letters 30: doi: 10.1029/2003GL017064. issn: 0094-8276. |
|
We consider the influence of ambient groundwater flow on the migration of DNAPL within a fracture network. In context of a modified invasion percolation (MIP) growth algorithm, we formulate a mechanistic model that includes capillary and gravity forces as well as viscous forces within the DNAPL and the ambient groundwater. The MIP model is verified against laboratory experiments, which show good agreement in DNAPL migration path through a two-dimensional fracture network. The results of both simulations and laboratory experiments suggest that ambient groundwater flow can be a significant factor controlling DNAPL migration path, velocity, and channeling pattern in a fracture network. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Physical Properties of Rocks, Fracture and flow, Physical Properties of Rocks, Transport properties, Physical Properties of Rocks, Permeability and porosity |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|