EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Borradaile 2003
Borradaile, G.J. (2003). Viscous magnetization, archaeology and Bayesian statistics of small samples from Israel and England. Geophysical Research Letters 30: doi: 10.1029/2003GL016977. issn: 0094-8276.
Certain limestones remagnetize viscously and noticeably over archaeological time-intervals, after their reorientation into monuments. The laboratory demagnetization temperatures (TUB) for the VRM increase with the installation age; with rates of ~0.07 C0/year for Israel chalk and ~0.1C0/year for English chalk. The empirical relationship may be used to date enigmatic buildings or geomorphological features (e.g., land slips). Such correlations also give some insight into the viscous remagnetization process over time intervals t = 4000 years, which are unobtainable in laboratory studies. The TUB-age relationship for the viscous remagnetization appears to follow a power law, linearized as log10(t) ≈ b log10 (TUB). Different pelagic limestones follow different curves and, whereas conventional regression estimates the power law exponent b, the small sample size recommends a Bayesian statistical approach. From sites constructed with pelagic chalk from eastern England, precise prior information (b = 0.761) is compared with less precise information for much more ancient sites in northern Israel (b = 0.873). The collective posterior correlation shows a generalized power law exponent b = 0.849. That regression explains 84.9% of the collective variance in age (r2 = 0.849). Of course, site-specific calibration is required for archaeological age determinations. Certain limestones remagnetize viscously and noticeably over archaeological time-intervals, after their reorientation into monuments. The laboratory demagnetization temperatures (TUB) for the VRM increase with the installation age; with rates of ~0.07 C0/year for Israel chalk and ~0.1C0/year for English chalk. The empirical relationship may be used to date enigmatic buildings or geomorphological features (e.g., land slips). Such correlations also give some insight into the viscous remagnetization process over time intervals t = 4000 years, which are unobtainable in laboratory studies. The TUB-age relationship for the viscous remagnetization appears to follow a power law, linearized as log10(t) ≈ b log10 (TUB). Different pelagic limestones follow different curves and, whereas conventional regression estimates the power law exponent b, the small sample size recommends a Bayesian statistical approach. From sites constructed with pelagic chalk from eastern England, precise prior information (b = 0.761) is compared with less precise information for much more ancient sites in northern Israel (b = 0.873). The collective posterior correlation shows a generalized power law exponent b = 0.849. That regression explains 84.9% of the collective variance in age (r2 = 0.849). Of course, site-specific calibration is required for archaeological age determinations.
BACKGROUND DATA FILES

Abstract

Keywords
Geomagnetism and Paleomagnetism, Archeomagnetism, Geomagnetism and Paleomagnetism, Paleomagnetism applied to tectonics (regional, global), Geomagnetism and Paleomagnetism, Remagnetization, Geomagnetism and Paleomagnetism, Rock and mineral magnetism
Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit