EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Wooster 2002
Wooster, M.J. (2002). Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophysical Research Letters 29: doi: 10.1029/2002GL015487. issn: 0094-8276.

Combustion of forest and grassland vegetation contributes to atmospheric pollution and rising greenhouse gases concentrations. Remotely measuring the energy radiated during natural fires has been suggested as a method for enhancing current emissions estimates. When made from satellites, such measures can potentially provide important new information on large-scale biomass combustion rates, which relate directly to the production of emissions. EOS-MODIS now makes such observations globally, multiple times per day. Using small experimental fires observed with a field spectro-radiometer we present the first evaluation of the relationship between time-integrated fire radiative energy and total mass of vegetation combusted. Results indicate a linear relationship (r2 = 0.78) for fire sizes varying over almost two orders of magnitude. Further information on the rate and intensity of burning is contained within the emission spectra. The results support the continued investigation of fire radiative energy as a new tool to enhance biomass burning emissions inventories.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Biosphere/atmosphere interactions, Global Change, Biogeochemical processes, Global Change, Remote sensing
Journal
Geophysical Research Letters
http://www.agu.org/journals/gl/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit