EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Kumagai et al. 2002
Kumagai, H., Chouet, B.A. and Nakano, M. (2002). Waveform inversion of oscillatory signatures in long-period events beneath volcanoes. Journal of Geophysical Research 107: doi: 10.1029/2001JB001704. issn: 0148-0227.

The source mechanism of long-period (LP) events is examined using synthetic waveforms generated by the acoustic resonance of a fluid-filled crack. We perform a series of numerical tests in which the oscillatory signatures of synthetic LP waveforms are used to determine the source time functions of the six moment tensor components from waveform inversions assuming a point source. The results indicate that the moment tensor representation is valid for the odd modes of crack resonance with wavelengths 2L/n, 2W/n, n = 3, 5, 7, …, where L and W are the crack length and width, respectively. For the even modes with wavelengths 2L/n, 2W/n, n = 2, 4, 6, …, a generalized source representation using higher-order tensors is required, although the efficiency of seismic waves radiated by the even modes is expected to be small. We apply the moment tensor inversion to the oscillatory signatures of an LP event observed at Kusatsu-Shirane Volcano, central Japan. Our results point to the resonance of a subhorizontal crack located a few hundred meters beneath the summit crater lakes. The present approach may be useful to quantify the source location, geometry, and force system of LP events, and opens the way for moment tensor inversions of tremor.

BACKGROUND DATA FILES

Abstract

Keywords
Seismology, Theory and modeling, Seismology, Volcano seismology, Volcanology, Eruption mechanisms, Volcanology, Hydrothermal systems
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit