|
Detailed Reference Information |
Craddock, R.A. and Howard, A.D. (2002). The case for rainfall on a warm, wet early Mars. Journal of Geophysical Research 107: doi: 10.1029/2001JE001505. issn: 0148-0227. |
|
Valley networks provide compelling evidence that past geologic processes on Mars were different than those seen today. The generally accepted paradigm is that these features formed from groundwater circulation, which may have been driven by differential heating induced by magmatic intrusions, impact melt, or a higher primordial heat flux. Although such mechanisms may not require climatic conditions any different than today's, they fail to explain the large amount of recharge necessary for maintaining valley network systems, the spatial patterns of erosion, or how water became initially situated in the Martian regolith. In addition, there are no clear surface manifestations of any geothermal systems (e.g., mineral deposits or phreatic explosion craters). Finally, these models do not explain the style and amount of crater degradation. To the contrary, analyses of degraded crater morphometry indicate modification occurred from creep induced by rain splash combined with surface runoff and erosion; the former process appears to have continued late into Martian history. A critical analysis of the morphology and drainage density of valley networks based on Mars Global Surveyor data shows that these features are, in fact, entirely consistent with rainfall and surface runoff. The necessity for a cold, dry early Mars has been predicated on debatable astronomical and climatic arguments. A warm, wet early climate capable of supporting rainfall and surface runoff is the most plausible scenario for explaining the entire suite of geologic features in the Martian cratered highlands. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Planetary Sciences, Atmospheres--evolution, Planetary Sciences, Erosion and weathering, Hydrology, Erosion and sedimentation, Hydrology, Geomorphology |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|