EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Alicke et al. 2002
Alicke, B., Platt, U. and Stutz, J. (2002). Impact of nitrous acid photolysis on the total hydroxyl radical budget during the Limitation of Oxidant Production/Pianura Padana Produzione di Ozono study in Milan. Journal of Geophysical Research 107: doi: 10.1029/2000JD000075. issn: 0148-0227.

The photolysis of nitrous acid (HONO) in the early morning hours is believed to be a significant source of hydroxyl radicals (OH), the most important daytime oxidizing species. Although the importance of this mechanism has been recognized for many years, no accurate experimental quantification is available. Here we present measurements of HONO, NO2, SO2, O3 and HCHO by Differential Optical Absorption Spectroscopy (DOAS) during the Limitation of Oxidant Production/Pianura Padana Produzione di Ozono (LOOP/PIPAPO) study in May--June 1998 in Milan, Italy. The concentration of NO and J(NO2)/J(HONO) were simultaneously monitored by in situ monitors. The photolysis frequencies of HCHO and O3 were determined with a radiative transfer model. High nocturnal HONO mixing ratios of up to 4.4 ppb were regularly observed. Elevated daytime HONO levels during cloudy periods show that the formation of HONO proceeds after sunrise and therefore also represents a source of hydroxyl radicals throughout the day. Averaged over 24 hours, HCHO photolysis is the most important source of OH in Milan, followed by either ozone or HONO photolysis. Our observations indicate that on certain days the OH production from HONO can be even more important than that from ozone photolysis. The diurnal variation of the different OH formation mechanisms shows that HONO photolysis is by far the most important source in the early hours of the morning, and can be as large as and even surpass the total OH production at noon.

BACKGROUND DATA FILES

Abstract

Keywords
Atmospheric Composition and Structure, Troposphere--composition and chemistry, Atmospheric Composition and Structure, Pollution--urban and regional, Atmospheric Composition and Structure, Instruments and techniques
Journal
Journal of Geophysical Research
http://www.agu.org/journals/jb/
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit