EarthRef.org Reference Database (ERR)
Development and Maintenance by the EarthRef.org Database Team

Detailed Reference Information
Mottl et al. 2003
Mottl, M.J., Komor, S.C., Fryer, P. and Moyer, C.L. (2003). Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195. Geochemistry Geophysics Geosystems 4: doi: 10.1029/2003GC000588. issn: 1525-2027.
As the Pacific plate subducts beneath the Mariana forearc it releases water that hydrates the overlying mantle wedge, converting it to serpentinite that protrudes to form mud volcanoes at the seafloor. Excess H2O ascends through these mud volcanoes and exits as cold springs at their summits. The composition of this deep-slab derived water has been determined by drilling on two of these seamounts. It has a pH of 12.5 and, relative to seawater, is enriched in sulfate, alkalinity, Na/Cl, K, Rb, B, light hydrocarbons, ammonia, 18O, and deuterium, and depleted in chloride, Mg, Ca, Sr, Li, Si, phosphate, and 87Sr. Within the upper 20 m below seafloor at South Chamorro Seamount a microbial community operating at pH 12.5, made up overwhelmingly of Archaea, is oxidizing methane from the ascending fluid to carbonate ion and organic carbon, while reducing sulfate to bisulfide and probably dissolved nitrogen to ammonia. As the Pacific plate subducts beneath the Mariana forearc it releases water that hydrates the overlying mantle wedge, converting it to serpentinite that protrudes to form mud volcanoes at the seafloor. Excess H2O ascends through these mud volcanoes and exits as cold springs at their summits. The composition of this deep-slab derived water has been determined by drilling on two of these seamounts. It has a pH of 12.5 and, relative to seawater, is enriched in sulfate, alkalinity, Na/Cl, K, Rb, B, light hydrocarbons, ammonia, 18O, and deuterium, and depleted in chloride, Mg, Ca, Sr, Li, Si, phosphate, and 87Sr. Within the upper 20 m below seafloor at South Chamorro Seamount a microbial community operating at pH 12.5, made up overwhelmingly of Archaea, is oxidizing methane from the ascending fluid to carbonate ion and organic carbon, while reducing sulfate to bisulfide and probably dissolved nitrogen to ammonia.
BACKGROUND DATA FILES

Abstract
Abstract

Table 1
Table 1

Keywords
Geochemistry, Geochemical cycles, Geochemistry, Marine geochemistry (4835, 4850), Global Change, Biogeochemical processes
Journal
Geochemistry Geophysics Geosystems
Publisher
American Geophysical Union
2000 Florida Avenue N.W.
Washington, D.C. 20009-1277
USA
1-202-462-6900
1-202-328-0566
service@agu.org
Click to clear formClick to return to previous pageClick to submit