|
Detailed Reference Information |
Lunati, I., Attinger, S. and Kinzelbach, W. (2002). Macrodispersivity for transport in arbitrary nonuniform flow fields: Asymptotic and preasymptotic results. Water Resources Research 38: doi: 10.1029/2001WR001203. issn: 0043-1397. |
|
We use homogenization theory to investigate the asymptotic macrodispersion in arbitrary nonuniform velocity fields, which show small-scale fluctuations. In the first part of the paper, a multiple-scale expansion analysis is performed to study transport phenomena in the asymptotic limit ϵ ≪ 1, where ϵ represents the ratio between typical lengths of the small and large scale. In this limit the effects of small-scale velocity fluctuations on the transport behavior are described by a macrodispersive term, and our analysis provides an additional local equation that allows calculating the macrodispersive tensor. For Darcian flow fields we show that the macrodispersivity is a fourth-rank tensor. If dispersion/diffusion can be neglected, it depends only on the direction of the mean flow with respect to the principal axes of anisotropy of the medium. Hence the macrodispersivity represents a medium property. In the second part of the paper, we heuristically extend the theory to finite ϵ effects. Our results differ from those obtained in the common probabilistic approach employing ensemble averages. This demonstrates that standard ensemble averaging does not consistently account for finite scale effects: it tends to overestimate the dispersion coefficient in the single realization. |
|
|
|
BACKGROUND DATA FILES |
|
|
Abstract |
|
|
|
|
|
Keywords
Hydrology, Groundwater transport, Hydrology, Stochastic processes, Physical Properties of Rocks, Transport properties |
|
Publisher
American Geophysical Union 2000 Florida Avenue N.W. Washington, D.C. 20009-1277 USA 1-202-462-6900 1-202-328-0566 service@agu.org |
|
|
|